2nd Q-MAC Symposium November 1-4, 2016, Venice International University Isola di San Servolo, Venice, ITALY | November 1-4, 20
Isola di San Servolo, Venice, 1776 | 16:30 – 17:00 17:00 – 18:00 Coffee break Andrew Millis Electronic Squeezing of Pumped Phonons: Induced Electronic Squeezing of Pumped Phonons: Induced The Interactions and Transient Superconductivity | |---|--| | i ala di San Serva | Coffee break Andrew Millis Andrew Millis Electronic Squeezing of Pumped Phonons: Induced Andrew Millis Electronic Squeezing of Pumped Phonons: Induced Andrew Millis Electronic Squeezing of Pumped Phonons: Induced Andrew Millis | | Sola a. | 17:00 – 18:00 Analew Squeezing of Fair- Electronic Squeezing of Fair- Electronic Squeezing and Transient Supercons | | PROGRAM Tuesday, November 1 PROGRAM Tuesday, November 1 Andrea Cavalleri | A +traCuivo | | PROGRAM Tubbandrea Cavalleri | PROGRAM Thursday, November 3 Antoine Georges Antoine Justing | | | Thursday, Thursd | | codik coloctrollic | 08:30 – 08:45 Antonic Introduction Introduct | | 14:15 – 15:15 Nun Gedin Manipulation of electron Optical manipula | O8:50 6 Introduction Mazza Giacomo Mazza Giacomo Superconductivity in A ₃ C ₆₀ System | | Lands Using | - 0 15 - 117 · T | | Dimitri Basov Dimitri Basov Elusive electronic phases in correlated Elusive electronic phases in correlated Elusive electronic phases in correlated | Non-equining Non-e | | 15:15 – 16:15 Dimitri Date Elusive electronic phases in companies phas | ng:45 - 10:45 | | :nfrareu IIu | Coffee break | | ac - hrpdh | 10:45 - 11.30 Eugene Dellinos pairing in Horr of | | 16.15 – 10.16 Andrea Cavanie | Coffee break 10:45 – 11:30 11:30 – 12:30 Coffee break Eugene Demler Dynamical copper pairing in non-equilibrium electron-phonon systems electron-phonon systems | | 16.45-17.00 hetroduction | election | | | 10.20 = 14.5 | | | 12:30 – 14:30 14:30 – 15:30 Jacqueline Bloch Jacqueline Bloch Jacqueline Bloch Jacqueline Bloch Jacqueline Bloch A non-linear photonic emulator A non-linear photonic emulator A non-linear photonic emulator | | Reversing to nonlinear prior ferroelectric by nonlinear @ VIU Joint "get together" dinner @ VIU | A non-linear photonic of | | 19:00 –21:00 Joint "get tos | Thomas Law harial Property | | | 15:30 – 10.33 Molecular and Coupling | | 19:00 – 21:00 PROGRAM Wednesday, November 2 PROGRAM Peter Armitage Peter Armitage Low energy electrodynamics of the electrodynamics energy electrodynamics electrodynamics energy electrodynamics el | Light-Marco. | | 08:30 – 09:30 Peter Armitage Peter Armitage Low energy electrodynamics of the electrod | ngs, | | Low energy of Yb ₂ Tl ₂ O ₇ . St. quantum spin ice of Yb ₂ D ₇ . Tl. quantum spin ice | 16:30 17:00 18:00 lacopo Catalan fluids of light: First 33 Quantum 34 | | monopoles conducts | 17:00 – 18:00 17:00 – 18:00 Quantum fluids of light. The light is Q | | | | | 09:30 –10:30 Charles 7th The Materials Physics of Communication | PROGRAM Friday, November 4 PROGRAM Friday, November 4 Dieter Jaksch | | 10:30 – 11:15 10:30 – 11:15 Jean-Marc Triscone Jean-Marc Triscone | DROGRAM Dieter Jaksch | | 10:30 – 11:15 Jean-Maio
11:00 – 11:15 Introduction | 09.3()-00.1 L+rodilction | | c-+3/3/10 , -+v(| onic phases | | 11:15 – 12:15 Sara Catalan Control and design of electro Control and design of electro in nickelate-based heterostr | Uctures 08:45 – 09:45 Honaction Final Street Control of the Contr | | in nickelate | driven Hubban
Coffee & Snacks | | Lunch break | mobility 09:45 – 10:30 Coffee & Sharp Coffee Cosing remarks | | 12:15 – 14:30 Lunch break Masashi Kawasaki Masashi Kawasaki Masashi Kawasaki | Throstructures 10:30 – 11:00 Closing (| | 14:30 – Total Quantum Control hete | YOSTI UCC | | oxide serricos | a transient plasma | | oxide semiconductor | d materials | | More information: 15:30 – 16:30 Fabrizio Casta Shaping and characteriz Shaping and characteriz Shaping and characteriz Shaping and spectroscopic resonances for advance resonance shape | nnV | | More information: www.g-mac.eu | | | www.q-mac.eu | Q-MAC is funded by the ERC. | Organization & Contact: Diana Hoppe, Q-MAC project coordinator Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 / 22761 Hamburg / Tel. +49 (0)40 89 98 65 75 Fax +49 (0)40 89 94 65 75 / diana.hoppe@mpsd.mpg.de In cooperation with Venice International University