Q-MAC meetings in 2019:

Regular meetings of the Q-MAC team

Read more

Dieter Jaksch awarded with the 2018 Thomas Young Medal and Prize

for "his contributions to theoretical proposals enabling the study of non-equilibrium quantum many-body dynamics with unprecedented microscopic control in ultra-cold atoms, and establishing them as a quantum technologies platform".

Read more

Publication Detail / Abstract

J. Mravlje, A. Georges

Thermopower and Entropy: Lessons from Sr2RuO4

published in PRL on July 12, 2016
> Full text via publisher
We calculate the in-plane Seebeck coefficient of Sr2RuO4 within a framework combining electronic structure and dynamical mean-field theory. We show that its temperature dependence can be interpreted using entropic considerations based on the Kelvin formula and that it provides a meaningful probe of the crossover out of the Fermi liquid regime into an incoherent metal. This crossover proceeds in two stages: The entropy of spin degrees of freedom is released around room temperature, while orbital degrees of freedom remain quenched up to much higher temperatures. This is confirmed by a direct calculation of the corresponding susceptibilities and is a hallmark of "Hund’s metals.” We also calculate the c-axis thermopower and predict that it exceeds substantially the in-plane one at high temperature, a peculiar behavior which originates from an interlayer “hole-filtering” mechanism.
< Back